
General Principles of Software
Validation; Final Guidance for

Industry and FDA Staff

Document issued an: [Release date of FR Notice]

This document supersedes the draft document, “General Principles of
Software Validation, Version 1.1, dated June 9,199X

Preface

Public Comment
Comments and suggestions may be submitted at any time for Agency consideration to Dockets
Management Branch, Division of Management Systems and Policy, Office of Human Resources
and Management Services, Food and Drug Administration, 5630 Fishers Lane, Room f 06 1,
(HFA-305), Rockville, MD, 20852. When submitting comments, please refer to the exact title of
this guidance document. Comments may not be acted upon by the Agency until the document is
next revised or updated.

For questions regarding the use or interpretation of this guidance which involve the Center for
Devices and Radiological Health (CDRH), contact Stewart Crumpler at (301) 594-4659 or email
esc@cdrh.fda,Rov.

For questions regarding the use or interpretation of this guidance which involve the Center for
Biologics Evaluation and Research (CBER) contact Jerome Davis at (301) 827-6220 or email
davis@,cber.fda.gov,

Additional Copies
CDRH
Additional copies are available from the Xnternet at: htt~://~.fda.~ov/cdr~oc/938 or
via CDRH Facts-On-Demand. In order to receive this document via your fax machine,
calf the CDRH Facts-On-Demand system at 800-899-038 1 or 30 f-827-0 1 f 1 from a
touch-tone telephone. Press 1 to enter the system. At the second voice prompt, press f to
order a document. Enter the document number 938 followed by the pound sign (#).
FolIow the remaining voice prompts to complete your request.

CBER
Additional copies are available from the Internet at:
htt~~/~~.fda.~ov/cber/~uideli~es*htm, by writing to CBER, Office of
Communication, Training, and ~anufac~rers’ Assistance (HFM-40), 140 1 Rockviffe
Pike, Rockvilfe, Maryland 20852-1448, or by telephone request at l-800-835-5709 or
301-827-f 800.

Page iii

Table of Contents

SECTION 1. PURPOSE *.*~*.~...*....***.~.***.*.........~**.....,~*.....*.*.......*..~....*....~...*~*.~.*....*.*....*........‘*** I

SECTION 2. SCOPE .‘~...*.~*.~*.t.,.~~*~...~..~.*.....~.*..~.~.~~~~**....*......*..~..~..,*..*.~..*.~~*...****.***..*.....*...~~.~~. I

2.1. Applicability .. 2

2,2, Audience ... 2

2.3. THE LEAST ~~~ENSUME APPRQACH ... 2

2.4. Regulatory Requirements for Software Validation ... 3

2.4. Quality System Regulation vs Pre-Market Submissions ... 4

SECTl[UN 3. CONTEXT FQR SOFTWARE VALIDATXON~........~.~~....~.~.~....~...~~.......~ 5

3.1. Definitions and Terminology ... 5
3. f . I Requirements and Specifications .. 5
3. I. 2 VeriJication and Validatiort

.
.. 6

3.1.3 XQ/OQPQ ... 7

3.2. Software Development as Part of System Design .. 7

3.3. Software is Different from Hardware ... 8
3.4. Benefits of Software Validation ... 9

3.5 Design Review .. 9

SECTION 4. PRINCIPLES OF SOFTWARE VALIDATION ..*.*‘..~**~~.**.*~.~.**.~.*.*.*~...~~.*.*** 11

4.1. Requirements .. 11
4.2, Defect Prevention .. 11
4.3. Time and Effort ... II
4.4. Software Life Cycle ... 11
4.5. Plans ... 12
4.6. Procedures ... 12
4.7. Software Validatian After a Change ... 12
4.8. Vaiidation Coverage ... 12

4.9. Independence of Review ... 12
4.10. Flexibility and Responsibility .. 13

Page iv

SECTION 5. ACTIVITIES AND TASKS .~.~~.~...***...**..*.*..*~.....*.....*.*.....~*...~~*.*~..**.****.*.*.**...** 14

5.1. Software Life Cycle Activities .. 14
5.2. Typical Tasks Supporting Validation ... x4

5.2. I. Quality Planning .. 1.5
5.2.2. Requirements ... 16
5.2.3. Desigrz .. 17
5.2.4. Constmction or Codirzg ... 19
5.23. Testing by the Software Developer .. 21
5.2.6. User Site Testing .. 26
5.2.7. Maintenance and Software Changes ... 28

SECTION 6. VALIDATION OF AUTUMATED PROCESS EQUZPMENT AND
QUALITY SYSTEM SOFTWARE .*~..**.*~..**...*.*......**..*~.*...~.*.*..~.*.*.*.....*.*...*...........*.*.*..~.*....... 30

6.1. Now Much Validation Evidence Is Needed9 ... 31

6.2. Defined User Requirements ... 32

6.3. Validation of Off-the-Shelf Software and Automated Equipment 33

APPENDIX A - REFERENCES ..*.......~.*.~...*.*.*.*....*~.‘*...**.*..~..*..**~*...~.*..**....*........**......*..*.***.... 35

Food and Drug Administration References .. 35

Other Government References .. 36

International and National Consensus Standards .~~~.~~~...~......~.............~..~..~..~~~~....~............. 37

Production Process Software References ... 38

General Software Quality References ... 39

APPENDIX B - DEVELOPMENT TEAM .*.*..*..C..*.L....*...**....**.~.*............*.*.~**....~*.....*.......~~~~*. 43

Page v

General Principles of Software Validation

requirements of the

SECTION 1. PURPOSE

This guidance outlines general validation principles that the Food and Drug Administration
(FDA) considers to be applicable to the validation of medical device software or the validation
of software used to design, develop, or manufacture medical devices. This final guidance
document, Version 2.0, supersedes the draft document, General Principles ofsoftware
Validation, Versiorz 1.1, dated June 9, 1997.

SECTION 2. SCOPE

This guidance describes how certain provisions of the medical device Quality System regulation
apply to software and the agency’s current approach to evaluating & software validation system.
For example, this document lists elements that are acceptable to the FDA for the validation of
software; however, it does not list all of the activities and tasks that must, in all instances, be
used to comply with the law.

The scope of this guidance is somewhat broader than the scope of validation in the strictest
definition of that term. Planning, verification, testing, traceability, configuration management,
and many other aspects of good software engineering discussed in this guidance are important
activities that together help to support a final conclusion that software is validated.

This guidance recommends an integration of software life cycle management and risk
management activities. Based on the intended use and the safety risk associated with the
software to be developed, the software developer should determine the specific approach, the
combination of techniques to be used, and the fevei of effort to be applied. While this guidance
does not recommend any specific fife cycle model or any specific technique or method, it does
recommend that software validation and verification activities be conducted throughout the
entire soffware life cycle.

Where the software is developed by someone other than the device manufacturer (e.g., off-the-
shelf software) the software developer may not be directly responsible fur compliance with FDA

Page 1

regulations. In that case, the party with regulatory responsibility (i.e., the device manufac~er)
needs to assess the adequacy of the off-the-shelf software developer’s activities and determine
what additional efforts are needed to establish that the software is validated for the device
manufac~rer’s intended use.

2.1. APPLICABILITY

This guidance applies to:

* Software used as a component, part, or accessory of a medical device;
l Software that is itself a medical device (e.g., blood establishment software);
* Software used in the production of a device (e.g., programmable logic controllers in

manufac~ring equipment); and
* Software used in implementation of the device manufacturer’s quality system (e.g., software

that records and maintains the device history record).

This document is based on generatly recognized software validation principles and, therefore,
can be applied to any software. For FDA purposes, this guidance applies to any software related
to a regulated medical device, as defined by Section 201(h) of the Federal Food, Drug, and
Cosmetic Act (the Act) and by current FDA software and regulatory policy, This document does
not specifically identify which software is or is not regulated.

2*2. AUDIENCE

This guidance provides useful information and recommendations to the following individuals:

l Persons subject to the medical device Quality System regulation
0 Persons responsible for the design, development, or production of medical device

software
* Persons responsible for the design, development, production, or procurement of

automated tools used for the design, development, or manufacture of medical devices or
software tools used to implement the quality system itself

l FDA Investigators
0 FDA Compliance Officers
* FDA Scientific Reviewers

2.3. THE LEAST ~~~E~S~ME APPROACH

We believe we should consider the feast burdensome approach in all areas of medicaf device
regulation. This guidance reflects our careful review of the relevant scientific and legal
requirements and what we believe is the least burdensome way for you to comply with those
requirements. However, if you believe that an alternative approach would be less burdensome,
please contact us so we can consider your point of view. You may send your written comments

Page 2

to the contact person listed in the preface to this guidance or to the CDRH Ombudsman.
Comprehensive ~nfo~atjon on CDRH’s Ombudsman, including ways to contact him, can be
found on the Internet at:

2.4. REGULATORY REQUIREMENTS FOR SOFTWARE VALIDATION

The FDA’s analysis of 3 140 medical device recalls conducted between 1992 and 1998 reveals
that 242 of them (7.7%) are attributable to software failures. Of those software related recalfs,
192 (or 79%) were caused by software defects that were introduced when changes were made to
the software after its initial production and distribution. Software validation and other related
good sofware engineering practices discussed in this guidance are a principal means of avoiding
such defects and resultant recalls.

Software validation is a requirement af the Quality System regulation, which was published in
the Federal Register on October 7, f 996 and took effect on June f , 1997. (See Title 2 1 Code of
Federal Regulations (CFR) Part 820, and 6X Federal Register (FR) 52602, respectively.)
Validation requirements apply to sofmare used as components in medical devices, to sofmare
that is itself a medical device, and to software used in production of the device or in
implementation of the device manufacturer’s quality system.

Unless specifically exempted in a classification regulation, any medical device software product
developed after June I., 1997, regardless of its device class, is subject to applicable design
control provisions. (See of 21 CFR $820.30.) This requirement includes the completion of
current development projects, all new development projects, and all changes made to existing
medical device software. Specific requirements for validation of device sohare are found in
2X CFR &820.30(g). Other design controls, such as planning, input, verification, and reviews,
are required for medical device software. (See 21 CFR $820.30.) The corresponding
documented results from these activities can provide additional support for a conclusion that
medical device software is validated.

Any software used to automate any part of the device production process or any part of the
quality system must be validated for its intended use, as required by 21 CFR $820.70(i). This
requirement appties to any software used to automate device design, testing, component
acceptance, manufacturing, labeling, packaging, distribution, complaint handling, or to automate
any other aspect of the quality system.

In addition, computer systems used to create, modifl, and maintain electronic records
and to manage electronic signatures are also subject to the validation requirements.
(See 2 I CFR 0 11.10(a).) Such computer systems must be validated to ensure accuracy,
reliability, consistent intended performance, and the ability to discern invalid or altered records.

Software for the above applications may be developed in-house or under contract. However,
software is frequently purchased off-the-shelf for a particular intended use. All production

Page 3

and/or quality system software, even if purchased off-the-shelf, should have documented
requirements that f&lfy define its intended use, and information against which testing results and
other evidence can be compared, to show that the software is validated for its intended use.

The use of off-the-shelf software in automated medical devices and in automated manufac~~ng
and quality system operations is increasing. Off-the-shelf software may have many capabilities,
only a few of which are needed by the device manufacturer, Device manufacturers are
responsible for the adequacy of the software used in their devices, and used to produce devices.
When device manufac~rers purchase “off-the-shelf’ software, they must ensure that it will
perform as intended in their chosen application, For off-the-shelf software used in
manufacturing or in the quality system, additional guidance is included in Section 6.3 of this
document. For device software, additional useful info~ation may be found in FDA’s Guidance
fur Industry, FDA Revdewers, and Compliance on ~ff~~~e-~~e~~~f~~~~ Use in Medical
Devices.

2.4. QUALITY SYSTEM FCEGULATION VS PRE-MARKET SUBMISSIONS

This document addresses Quality System regulation issues that involve the implementation of
software vaIidation. It provides guidance for the management and control of the software
validation process. The management and control of the software validation process should not
be conEused with any other validation requirements, such as process validation for an automated
manufacturing process.

Device manufacturers may use the same procedures and records for compliance with quality
system and design control requirements, as well as for pre-market submissions to FDA. This
document does not cover any specific safety or efficacy issues related to software validation.
Design issues and documentation requirements for pre-market submissions of regulated software
are not addressed by this document. Specific issues related to safety and efficacy, and the
documentation required in pre-market submissions, should be addressed to the Office of Device
Evaluation (UDE), Center for Devices and Radiological Health (CDRH) or to the Office of
Blood Research and Review, Center for Biologics Evaluation and Research (CBER). See the
references in Appendix A for applicable FDA guidance documents for pre-market submissions.

Page 4

SECTION 3. CONTEXT FOR SOFTWARE VALIDATION

Many people have asked for specific guidance on what FDA expects them to do to ensure
compliance with the Quality System regulation with regard to software validation. Information
on software validation presented in this document is not new. Validation of software, using the
principles and tasks listed in Sections 4 and 5, has been conducted in many segments of the
software industry for well over 20 years.

Due to the great variety of medical devices, processes, and manufac~ring facilities, it is not
possible to state in one document a’If of the specific validation elements that are applicable.
However, a general application of several broad concepts can be used successfully as guidance
for software validation. These broad concepts provide an acceptable framework for building a
comprehensive approach to sofmare validation. Additional specific information is available
from many of the references listed in Appendix A.

3.1. DEFINITIONS AND TERMINOLOGY

Unless defined in the Quality System regulation, or otherwise specified below, all other terms
used in this guidance are as defined in the current edition of the FDA Glossary of Computerized
System and software Develupment Terminolugy.

The medical device Quality System regulation (21 CFR 8203(k)) defines “establish” to mean
“define, document, and implement.++ Where it appears in this guidance, the words “establish”
and “established” should be interpreted to have this same meaning.

Some definitions found in the medical device Quality System regulation can be confusing when
compared to commonly used terminology in the sofware industry. Examples are requirements,
specification, verification, and validation.

3.1.1 Requirements and Specifications

While the Quality System regulation states that design input requirements must be documented,
and that specified requirements must be verified, the regulation does not further clarify the
distinction between the terms “requirement” and “specif’ication.” A requirement can be any
need or expectation for a system or for its software. Requirements reflect the stated or implied
needs of the customer, and may be market-based, contractual, or Stanton, as well as an
organization’s internal requirements. There can be many different kinds of requirements (e.g.,
design, fUnctional, impIementat~on, interface, performance, or physical requirements). SofIware
requirements are typically derived from the system requirements for those aspects of system
functionality that have been allocated to software. Software requirements are typically stated in
functional terms and are defined, refined, and updated as a development project progresses.
Success in accurately and completely documenting sofmare requirements is a crucial factor in
successtil validation of the resulting software.

Page 5

A specification is defined as “a document that states requirements.” (See 2 1 CFR @K%L3(y).) It
may refer to or include drawings, patterns, or other relevant documents and usually indicates the
means and the criteria whereby conformity with the requirement can be checked. There are
many different kinds of written specifications, e.g., system requirements specification, software
requirements specification, software design specification, sofmare test specification, software
integration specification, etc. All of these documents establish “specified requirements” and are
design outputs for which various forms of verification are necessary.

3.1.2 Verification and Validation

The Quality System regulation is harmonized with IS0 8402: f 994, which treats ‘“verification”
and “validation”’ as separate and distinct terms. On the other hand, many sofmare engineering
journal articles and textbooks use the terms “verification”’ and “‘validation” interchangeably, or in
some cases refer to software Verification, validation, and testing (W&T)*’ as if it is a single
concept, with no distinction among the three terms.

Software verification provides objective evidence that the design outputs of a particular phase
of the software development fife cycle meet all of the specified requirements for that phase.
Software verification looks for consistency, completeness, and correctness of the software and its
supporting documentation, as it is being devefoped, and provides support for a subsequent
conclusion that soBware is validated, Software testing is one of many verification activities
intended to confirm that software development output meets its input requirements. Other
verification activities include various static and dynamic analyses, code and document
inspections, walk&roughs, and other techniques.

Software validation is a part of the design validation for a finished device, but is not separately
defined in the Quality System regulation. For purposes of this guidance, FDA considers
software validation to be “confirmation by examination and provision of objective evidence
that software speeificatbns conform to user needs and intended uses, and that the
particular requirements implemented through software can be consistently fulfilIed,” In
practice, software validation activities may occur both during, as well as at the end of the
software development life cycle to ensure that all requirements have been tilfilled. Since
software is usually part of a larger hardware system, the validation of software typicalfy includes
evidence that all software requirements have been implemented correctly and completely and are
traceable to system requirements. A conclusion that software is validated is highly dependent
upon comprehensive software testing, inspections, analyses, and other verification tasks
performed at each stage of the software development life cycle. Testing of device soBware
functionality in a simulated use environment, and user site testing are typically included as
components of an overall design validation program for a software automated device.

Software verifification and validation are difficult because a devefoper cannot test forever, and it
is hard to know how much evidence is enough. In large measure, software validation is a matter
of developing a “level of confidence” that the device meets all requirements and user
expectations for the software automated Gmctions and features of the device. Measures such as
defects found in specifications documents, estimates of defects remaining, testing coverage, and
other techniques are all used to develop an acceptable level of confidence before shipping the

Page 6

product. The level of confidence, and therefore the level of software validation, verification, and
testing effort needed, wilI vary depending upon the safety risk (hazard) posed by the automated
functions of the device. Additional guidance regarding safety risk management for so&ware may
be found in Section 4 of FDA% Guidance for the Content of Pre-market Submissions for
Software Contained in Medical Devtces, and in the international standards ISOlIEC 14971-I and
fEC 60601-1-4 referenced in Appendix A.

3.1.3 TQlOQlPQ

For many years, both FDA and regulated industry have attempted to understand and define
software validation within the context of process validation terminology. For example, industry
documents and other FDA validation guidance sometimes describe user site software validation
in terms of installation qual~~cation (IQ), operational qualification (OQ) and performance
qualification (PQ). Definitions of these terms and additional information regarding IQ/QQ/PQ
may be found in FDA’s Guideline on Ge?wal Princ@ples of Process Validation, dated May f f ,
1987, and in FDA’s Glossary of Computerized System and Software Development Terminology,
dated August 1995.

While IQ/UQ/PQ terminology has served its purpose welt and is one of many legitimate ways to
organize sofmare validation tasks at the user site, this terminology may not be well understood
among many software professionals, and it is nut used elsewhere in this document. However,
both FDA personnel and device manufacturers need to be aware of these differences in
terminology as they ask for and provide information regarding software validation,

3.2. SOFTWARE DEVELOPMENT AS PART UP SYSTEM DESIGN

The decision to implement system functionality using software is one that is typically made
during system design. Sobare requirements are typically derived from the overall system
requirements and design for those aspects in the system that are to be implemented using
sohare. There are user needs and intended uses for a finished device, but users typically do not
specify whether those requirements are to be met by hardware, software, or some combination of
both. Therefore, sohare validation must be considered within the context of the overall design
vahdation for the system.

A documented requirements specification represents the user’s needs and intended uses from
which the product is developed. A primary goal of software validation is to then demonstrate
that all completed software products comply with all documented software and system
requirements. The correctness and completeness of both the system requirements and the
software requirements shuuld be addressed as part of the design validation process for the
device. Software validation incfudes confirmation of conformance to afl sohare specifications
and confirmation that all sofiware requirements are traceable to the system specifications.
Confirmation is an important part of the overall design validation to ensure that all aspects of the
medical device conform to user needs and intended uses.

Page 7

3,3. SOFTWARJC IS DIFFERENT FRUM WARDWARE

While software shares many of the same engineering tasks as hardware, it has some very
important differences. For example:

8 The vast majority of software problems are traceable to errors made during the design
and development process. While the quality of a hardware product is highly dependent
on design, development and manufacture, the quality of a software product is dependent
primarily on design and development with a minimum concern for software manufacture.
Software manufac~ring consists of reproduction that can he easily verified, It is not
difficult to manufacture thousands of program copies that function exactly the same as
the original; the difficulty comes in getting the original program to meet all
specifications.

* One of the most significant features of software is branching, i.e., the ability to execute
alternative series of commands, based on differing inputs. This feature is a major
contributing factor for another characteristic of sofmare - its complexity. Even short
programs can be very complex and difficult to fully understand.

* Typically, testing alone cannot fully verify that software is complete and correct. In
addition to testing, other verification techniques and a structured and documented
development process should be combined to ensure a comprehensive validation
approach.

0 Unlike hardware, software is not a physical entity and does not wear out. In fact,
software may improve with age, as latent defects are discovered and removed. However,
as software is constantly updated and changed, such improvements are sometimes
countered by new defects introduced into the software during the change.

* Unlike some hardware failures, software failures occur without advanced warning. The
software’s branching that allows it to follow differing paths during execution, may hide
some latent defects until long after a software product has been introduced into the
marketplace.

8 Another related characteristic: of software is the speed and ease with which it can be
changed. This factor can cause both software and non-sohare professionals to believe
that so&are problems can be corrected easily, Combined with a lack of understanding
of software, it can lead managers to believe that tightly controlled engineering is not
needed as much for software as it is for hardware. In fact, the opposite is true. Because
of its complexity, the development process for software should be even more tightly
controlled than for hardware, in order to prevent problems that cannot be easily
detected later in the development process.

* Seemingly insignificant changes in software code can create unexpected and very
significant problems elsewhere in the software program. The software development

Page 8

process should be sufficiently well planned, controlled, and documented to detect and
correct unexpected resufts from soBware changes.

l Given the high demand for software professionals and the highly mobile workforce, the
software personnel who make maintenance changes to software may not have been
involved in the original software development. Therefore, accurate and thorough
documentation is essential.

* Historically, software components have not been as frequently standardized and
interchangeable as hardware components. However, medical device software developers
are beginning to use component-based development tools and techniques. Object-
oriented methodologies and the use of off-the-shelf software components hold promise
for faster and less expensive software development. Ho&ever, component-based
approaches require very care&i attention during integration. Prior to integration, time is
needed to tilly define and develop reusable software code and to fully understand the
behavior of off-the-shelf components.

For these and other reasons, software engineering needs an even greater level of
managerial scrutiny and control than does hardware engineering,

3.4. BENEFITS OF’ SOFTWARE VALIDATION

Software validation is a critical tool used to assure the quality of device software and software
automated operations. Software validation can increase the usability and reliability of the
device, resulting in decreased failure rates, fewer recalls and corrective actions, less risk to
patients and users, and reduced liability to device manufacturers. Software validation can also
reduce long term costs by making it easier and less costly to reliably modify software and
revafidate sofiware changes. Software maintenance can represent a very large percentage of the
total cost of software over its entire life cycle. An established comprehensive software
validation process helps to reduce the long-term cost of software by reducing the cost of
validation for each subsequent release of the software.

3.5 DESIGN REVIEW

Design reviews are documented, comprehensive, and systematic examinations of a design to
evafuate the adequacy of the design requirements, to evaluate the capability of the design to meet
these requirements, and to identify problems. While there may be many informal technical
reviews that occur within the development team during a software project, a formal design
review is more structured and includes participation from others outside the development team.
Formal design reviews may reference or include results from other formal and informal reviews.
Design reviews may be conducted separately for the software, after the software is integrated
with the hardware into the system, or both. Design reviews should include examination of
development plans, requirements specifications, design specifications, testing plans and
procedures, all other documents and activities associated with the project, verification results
from each stage of the defined life cycfe, and validation results for the overall device.

Page 9

Design review is a primary tool for managing and evaluating development projects. For
example, formal design reviews allow management to confirm that all goals defined in the
software validation plan have been achieved. The Quality System regulation requires that at
jeast one formal design review be conducted during the device design process. However, it is
recommended that multiple design reviews be conducted (e.g., at the end of each sofware fife
cycle activity, in preparation for proceeding to the next activity). Forrnaf design review is
especiafly important at or near the end of the requirements activity, before major resources have
been committed to specific design solutions. Problems found at this point can be resolved more
easily, save time and money, and reduce the likelihood of missing a criticaf issue.

Answers to some key questions should be documented during formal design reviews. These
include:

e Have the appropriate tasks and expected results, outputs, or products been established for
each software life cycle activity?

* Do the tasks and expected results, outputs, or products of each software fife cycle
activity:

J Comply with the requirements of other software life cycle activities in terms of
correctness, completeness, consistency, and accuracy?

J Satis@ the standards, practices, and conventions of that activity?

J Establish a proper basis for initiating tasks for the next software fife cycle activity?

Page 10

SECTION 4. PRINCIPLES OF SOFTWARE
VALIDATION

This section lists the genera! principles that should be considered for the validation of software.

A documented so&ware requirements specification provides a baseline for both vafidation and
verification. The software vafidation process cannot be completed without an established
sofmare requirements specification (Ref: 21 CFR 820.3(z) and (aa) and 820.30(f) and (g)).

4.2. DEFECT PREVENTION

Software quaIity assurance needs to focus on preventing the introduction of defects into the
so&ware development process and not on trying to “test quality into” the software code after it is
written. Software testing is very limited in its ability to surface all latent defects in sohare
code. For example, the complexity of most software prevents it from being exhaustively tested.
Software testing is a necessary activity. However, in most cases software testing by itself is
not sufficient to establish confidence that the software is fit for its intended use, fn order to
establish that confidence, software developers should use a mixture of methods and techniques to
prevent sohare errors and to detect software errors that do occur. The “best mix” of methods
depends on many factors including the development environment, application, size of project,
language, and risk.

4.3, TIME AND EFFORT

To build a case that the software is validated requires time and effort. Preparation for sohare
validation should begin earfy, i.e., during design and development planning and design input.
The final conclusion that the so&ware is validated should be based on evidence collected from
planned efforts conducted throughout the software fifecycle.

4.4. SUFTWARE LIFEI CYCLE

Software validation takes place within the environment of an established software life cycle.
The sohare iife cycle contains sofware engineering tasks and documentation necessary to
support the sofware validation effort. In addition, the software fife cycle contains specific
verification and validation tasks that are appropriate for the intended use of the software. This
guidance does not recommend any particular life cycle models - only that they should be
selected and used for a so&are development project.

Page f I

4.5. PLANS

The software validation process is defined and controlled through the use of a plan. The
software vafidation plan defines “‘what” is to be ac~omplisbed through the software vafidation
effort. Software validation plans are a significant quality system toof. Software validation plans
specify areas such as scope, approach, resources, schedules and the types and extent of activities,
tasks, and work items.

4.6. PROCEDURES

The sofmare validation process is executed through the use of procedures. These procedures
establish “how” to conduct the software validation effort. The procedures should identify the
specific actions or sequence of actions that must be taken to complete individual validation
activities, tasks, and work items.

4.7. S0FTWARE VALIDATION AFTER A CHANGE

Due to the compfexity of software, a seemingly small focal change may have a significant global
system impact. When any change (even a small change) is made to the software, the validatiun
status of the software needs to be re-established. Whenever software is changed, a validation
analysis should be conducted not just for validation of the individual change, but also to
determine the extent and impact of that change on the entire software system. Based on
this analysis, the so,frware developer should then conduct an appropriate level of sof%ware
regression testing to show that unchanged but vulnerable portions of the system have not been
adversely affected. Design controls and appropriate regression testing provide the confidence
that the software is validated after a softiare change.

4.8. VALIDATION COVERAGE

Validation coverage should be based on the software’s complexity and safety risk - nut on firm
size or resource constraints, The selection of vafidation activities, tasks, and work items should
be commensurate with the complexity of the software design and the risk associated with the use
of the software for the specified intended use. For lower risk devices, only baseline validation
activities may be conducted. As the risk increases additional validation activities should be
added to cover the additional risk. Validation documentation should be sufficient to demonstrate
that afX software vafidation plans and procedures have been completed successfUy.

Validation activities should be conducted using the basic quality assurance precept of
“independence of review.” Self-validation is extremely difficult. When possible, an
independent evaluation is always better, especially for higher risk applications. Some firms
contract out for a third-party independent verification and validation, but this solution may not

Page 12

always be feasible. Another approach is to assign internal staff members that are not involved in
a particular design or its implementations but who have sufficient knowledge to evaluate the
project and conduct the verification and validation activities. Smaller firms may need to be
creative in how tasks are organized and assigned in order to maintain internal independence of
review.

4.10. FLEX1CBILITY AND RESPONSIBILITY

Specific implementation of these software validation principles may be quite different from one
application to another. The device manufacturer has flexibility in choosing how to apply these
validation principles, but retains ultimate responsibility for demonstrating that the so&are has
been validated.

Software is designed, developed, validated, and regulated in a wide spectrum of environments,
and for a wide variety of devices with varying levels of risk. FDA regulated medical device
applications include software that:

* Is a component, part, or accessory of a medical device;
l Is itself a medical device; or
* Is used in manufa~~ring, design and development, or other parts of the quality system.

In each environment, software components from many sources may be used to create the
application (e.g., in-house developed software, off-the-shelf software, contract software,
shareware). In addition, software components come in many different forms (e.g., application
software, operating systems, compilers, debuggers, configuration management tooIs, and many
more). The validation of software in these environments can be a complex undertaking;
therefore, it is appropriate that all of these softiare validation principles be considered when
designing the software validation process. The resultant software validation process should be
commensurate with the safety risk associated with the system, device, or process,

Software validation activities and tasks may be dispersed, occurring at different locations and
being conducted by different organizations. However? regardless of the distribution of tasks,
contractual relations, source of components, or the development environment, the device
manufacturer or specification developer retains ultimate responsibility for ensuring that the
software is validated.

Page 13

SECTION 5. ACTIVITIES AND TASKS

Sofmare validation is accomplished through a series of activities and tasks that are planned and
executed at various stages of the software development life cycle. These tasks may be one time
occurrences or may be iterated many times, depending on the life cycle model used and the
scope of changes made as the software project progresses.

5.1. SOFTWARE LIFE CYCLE ACTIVITIES

This guidance does not recommend the use of any specific software life cycle model. Software
developers should establish a software fife cycle model that is appropriate for their product and
organization. The software life cycle mudef that is selected should cover the software from its
birth to its retirement. Activities in a typical software life cycle model include the folfuwing:

Quality Planning
System Requirements Definition
Detailed Software Requirements Specification
Software Design Specification
Construction or Coding
Testing
fnstaflation
Operation and Support
Maintenance
Retirement

Verification, testing, and other tasks that support soAware validation occur during each of these
activities. A life cycle model organizes these sofmare development activities in various ways
and provides a framework for monitoring and controlling the software development project.
Several soBware life cycle models (e.g.t waterfall, spiral, rapid prototyping, incremental
devefopment, etc.) are defined in FDA’s Glossary of Computerized System and Sofhyare
Developnaent Tmminokgy, dated August 1995. These and many other fife cycle models are
described in various references listed in Appendix A.

5.2. TYPICAL TASKS SUPPORTING VALIDATION

Fur each of the software life cycle activities, there are certain “typical” tasks that support a
conclusion that the sofhvare is validated. However, the specific tasks to be perfumed, their
order of performance, and the iteration and timing of their performance will be dictated by the
specific so&are Iife cycle model that is selected and the safety risk associated with the software
application. For very low risk applications, certain tasks may not be needed at all. However, the
software developer shoufd at least ccmsider each of these tasks and should define and document
which tasks are or are not appropriate for their specific application. The fullowing discussion is
generic and is not intended to prescribe any particular sufware fife cycle model or any particular
order in which tasks are to be performed.

Page 14

5.2.L Quality Planning

Design and development pfanning should culminate in a plan that identifies necessary tasks,
procedures for anomaly reporting and resofution, necessary resources, and management review
requirements, including formal design reviews. A so&are life cycle model and associated
activities should be identified, as w&i as those tasks necessary for each software life cycle
activity. The plan should include:

The specific tasks for each life cycle activity;
Enumeration of important quality factors (e.g., reliability, maintainability, and usability);
Methods and procedures for each task;
Task acceptance criteria;
Criteria for defining and documenting outputs in terms that will allow evaluation of their
conformance to input requirements;
Inputs for each task;
Outputs from each task;
Roles, resources, and responsibilities for each task;
Risks and assumptions; and
Documentation of user needs.

Management must identify and provide the appropriate software development environment and
resources. (See 21 CFR $820,20(b)(l) and (2).) Typicalfy, each task requires personnel as well
as physical resources. The plan should identify the personnel, the facility and equipment
resources for each task, and the rule that tisk (hazard) management will play. A conjuration
management plan should be developed that will guide and control multiple parallel development
activities and ensure proper communications and documentation. Controls are necessary to
ensure positive and correct correspondence among afi approved versions of the specifications
documents, source code, object code, and test suites that comprise a software system. The
controls also should ensure accurate identification of, and access to, the currently approved
versions.

Procedures should be created for reporting and resofving software anomalies found through
validation or other activities. Management should identify the reports and specify the contents,
format, and responsible organizational elements for each report. Procedures afso are necessary
for the review and approval of software development results, including the responsible
organizational elements for such reviews and approvals.

‘TJqGcal Tasks - Oualitv Planning

@ Risk (Hazard) Management Plan
* ConFrguration Management Plan
l Software Quality Assurance Plan

- Software Verification and Validation Plan

Page 15

a Verification and Validation Tasks, and Acceptance Criteria
5 Schedule and Resource Allocation (for software verification and validation activities)
u Reporting Requirements

- Formal Design Review Requirements
- Other Technical Review Requirements

* Problem Reporting and Resolution Procedures
* Other Support Activities

52.2, Requirements

Requirements development includes the identification, analysis, and documentation of
information about the device and its intended use. Areas of special importance include
allocation of system functions to hardware/software, operating conditions, user characteristics,
potential hazards, and anticipated tasks. In addition, the requirements should state clearly the
intended use of the software.

The software requirements specification document should contain a written definition of the
software functions. It is not possible to validate software without predetermined and
documented software requirements. Typical software requirements specify the following:

8

8

0

All so&ware system inputs;
All software system outputs;
All functions that the software system will perform;
All performance requirements that the software will meet, (e.g., data throughput,
reliability, and timing);
The definition of all external and user interfaces, as well as any internal software-to-
system interfaces;
Now users will interact with the system;
What constitutes an error and how errors should be handled;
Required response times;
The intended operating environment for the software, if this is a design constraint (e-g.,
hardware platform, operating system);
All ranges, limits, defaults, and specific values that the software will accept; and
All safety related requirements, specifications, features, or functions that will be
impIemented in software.

Software safety requirements are derived from a technieaf risk management process that is
closely integrated with the system requirements development process. Software requirement
spe~i~~ations should identify clearly the potential hazards that can result from a software failure
in the system as well as any safety requirements to be implemented in software. The
consequences of software failure should be evaluated, along with means of mitigating such
failures (e.g., hardware mitigation, defensive programming, etc.). From this analysis, it should
be possible to identify the most appropriate measures necessary to prevent harm.

The Quality System regulation requires a mechanism for addressing incomplete, ambiguous, or
conflicting requirements. (See 2 1 CFR 82030(c).) Each requirement (e.g., hardware, software,

Page 16

user, operator interface, and safety) identified in the software requirements specification should
be evaluated for accuracy, completeness, consistency, testability, correctness, and clarity. For
example, software requirements should be evaluated to verify that:

l There are no internal inconsistencies among requirements;
a All of the performance requirements for the system have been spelled out;
l Fault tolerance, safety, and security requirements are complete and correct;
* Allocation of software functions is accurate and complete;
l Software requirements are apprupriate fur the system hazards; and
l All requirements are expressed in terms that are measurable or objectively verifiable.

A software requirements traceability analysis should be conducted to trace software
requirements to (and from) system requirements and to risk analysis results. In addition to any
other analyses and documentation used to verify software requirements, a formal design review
is recommended to confirm that requirements are fully specified and appropriate before
extensive sofware design efforts begin. Requirements can be approved and released
incrementally, but care should be taken that interactions and interfaces among sofmare (and
hardware) requirements are properly reviewed, analyzed, and controlled.

Typical Tasks - Requirements

* Preliminary Risk Analysis
l Traceability Analysis

- Software Requirements to System Requirements (and vice versa)
- Software Requirements to Risk Analysis

l Description of User Characteristics
* Listing of Characteristics and Limitations of Primary and Secondary Memory
0 Software Requirements Evaluation
l Software User Interface Requirements Analysis
0 System Test Plan Generation
* Acceptance Test Plan Generation
* Ambiguity Review or Analysis

52.3. Design

In the design process, the software requirements specification is translated into a logical and
physical representation of the sofmare to be implemented. The software design specification is
a description of what the software should do and how it should do it. Due to complexity of the
project or to enable persons with varying levels of technical responsibilities to clearly understand
design information, the design specification may contain both a high level summary of the
design and detailed design information. The completed software design specification constrains
the programmer/coder to stay within the intent of the agreed upon requirements and design. A

Page 17

complete software design specification will relieve the programmer from the need to make ad
hoc design decisions.

The software design needs to address human factors. Use error caused by designs that are either
overly complex or contrary to users’ intuitive expectations for operation is one of the most
persistent and critical problems encountered by FDA. Frequently, the design of the software is a
factor in such use errors. Human factors engineering should be woven into the entire design and
development process, in&ding the device design requirements, analyses, and tests. Device
safety and usability issues should be considered when developing flowcharts, state diagrams,
prototyping tools, and test plans. Also, task and function analyses, risk analyses, prototype tests
and reviews, and ft.111 usability tests should be performed. Participants from the user population
should be included when applying these methodologies.

The software design specification should include:

*

l

*

*

*

*

*

l

0

*

*

l

*

l

Software requirements specification, including predetermined criteria fur acceptance of
the software;
So&ware risk analysis;
Development procedures and coding guidelines (or other programming procedures);
Systems documentation (e.g., a narrative or a context diagram) that describes the systems
context in which the program is intended to function, including the refationship of
hardware, software, and the physical environment;
Hardware to be used;
Parameters to be measured or recorded;
Logical structure (including control logic) and logical processing steps (e.g., algorithms);
Data structures and data flow diagrams;
Definitions of variables (control and data) and description of where they are used;
Error, alarm, and warning messages;
Supporting software (e,g., operaring systems, drivers, other application software);
Communication links (links among internal modules of the software, links with the
supporting software, links with the hardware, and links with the user);
Security measures (both physical and logical security); and
Any additional constraints not identified in the above elements,

The first four of the elements noted above usually are separate pre-existing documents that are
included by reference in the software design specification. Software requirements specification
was discussed in the preceding section, as was software risk anafysis. Written development
procedures serve as a guide to the organization, and written programming procedures serve as a
guide to individual programmers. As software cannot be validated without knowledge of the
context in which it is intended to function, systems documentation is referenced. If some of the
above elements are not included in the software, it may be helpful to future reviewers and
maintainers of the software if that is clearly stated (e.g., There are no error messages in this
program).

The activities that occur during software design have several purposes. Software design
evaluations are conducted to determine if the design is compfete, correct, consistent,

Page 18

unambiguous, feasible, and maintainable. Appropriate consideration of software architecture
(e.g., modular structure) during design can reduce the magnitude of future validation efforts
when software changes are needed. Software design evaluations may include analyses of control
flow, data flow, complexity, timing, sizing, memory allocation, criticafity analysis, and many
other aspects of the design. A traceability analysis should be conducted to verify that the
software design implements all of the software requirements. As a technique for identifying
where requirements are not sufficient, the traceability analysis should also verify that all aspects
of the design are traceable to software requirements. An analysis of communication links should
be conducted to evaluate the proposed design with respect to hardware, user, and related
software requirements. The software risk analysis should be re-examined to determine whether
any additional hazards have been identified and whether any new hazards have been introduced
by the design.

At the end of the software design activity, a Formal Design Review should be conducted to
verify that the design is correct, consistent, complete, accurate, and testable, before moving to
implement the design. Portions of the design can be approved and released incrementally for
implementation; but care should be taken that interactions and ~o~un~cat~on links among
various elements are properly reviewed, analyzed, and controlled.

Most software development models will be iterative. This is likely to result in severaf versions
of both the software requirement specification and the software design specification. All
approved versions should be archived and controlled in accordance with established
configuration management procedures,

Typical Tasks - Design

l Updated Software Risk Analysis
l Traceability Analysis m Design Specification to Software Requirements (and vice versa)
* Software Design Evaluation
* Design Communication Link Analysis
l Module Test Plan Generation
* Integration Test Han Generation
0 Test Design Generation (module, integration, system, and acceptance)

52.4. Construction or Coding

Software may be constructed either by coding (i.e., programming) or by assembling together
previously coded software components (e.g.9 from code libraries, off-the-shelf sof’tware, etc.) for
use in a new application. Coding is the software activity where the detailed design specification
is implemented as source code. Coding is the lowest fevel of abstraction for the software
development process. It is the last stage in decomposition of the sofiware requirements where
module specifications are translated into a programming language.

Page 19

Coding usually involves the use of a high-level programming language, but may also entail the
use of assembly language (or microcode) for time-critical operations. The source code may be
either compiled or interpreted for use on a target hardware platform. Decisions on the selection
of programming languages and softurare build tools (assemblers, linkers, and compilers) should
include consideration of the impact on subsequent quality evaluation tasks (e.g., availabifity of
debugging and testing tools for the chosen language). Some compilers offer optional levels and
commands for error checking to assist in debugging the code. Different levels of error checking
may be used throughout the coding process, and warnings or other messages from the compiler
may or may not be recorded. However, at the end of the coding and debugging process, the most
rigorous fevel of error checking is normally used to document what compilation errors stilf
remain in the software. ff the most rigorous level of error checking is not used for -final
translation of the source code, then just~~~ation for use of the less rigorous translation error
checking should be documented. Also, for the final compilation, there should be documentation
of the compilation process and its outcome, including any warnings or other messages from the
compiler and their resolution, or justification for the decision to leave issues unresolved.

Firms frequently adopt specific coding guidelines that establish quality policies and procedures
related to the software coding process. Source code should be evaluated to verify its compliance
with specified coding guidelines. Such guidelines should in&de coding conventions regarding
clarity, style, complexity management, and commenting. Code comments should provide usefuf
and descriptive information for a module, including expected inputs and outputs, variables
referenced, expected data types, and operations to be performed. Source code shuufd also be
evaluated to verify its compliance with the corresponding detailed design specit3cation. Modules
ready for integration and test should have documentation of compliance with coding guidelines
and any other applicable quality policies and procedures.

Source code evaluations are often implemented as code inspections and code walk&roughs.
Such static analyses provide a very effective means to detect errors before execution of the code.
They aflow for examination of each error in isolation and can also help in focusing later dynamic
testing of the software. Firms may use manual (desk) checking with appropriate controls to
ensure consistency and independence. Source code evaluations should be extended to
verification of internal linkages between modules and layers (horizontal and vertical interfaces),
and compliance with their design specifications. Documerrtation of the procedures used and the
results of source code evaluations should be maintained as part of design verification,

A source code traceability analysis is an important tool to verify that ail code is linked to
established specifications and established test procedures. A source code traceability analysis
should be conducted and documented to verifjr that:

l Each element of the software design specification has been implemented in code;
* Modules and functions implemented in code can be traced back to an element in the

sofmare design specification and to the risk analysis;
l Tests fur modules and functions can be traced back to an element in the software design

specificatiun and to the risk analysis; and
* Tests for modules and fun&ions can be traced to source code for the same modules and

functions.

Page 20

Typical Tasks - Construction or Coding,

0 Traceability Analyses
- Source Code to Design Specification (and vice versa)
- Test Cases to Source Code and to Design Specification

a Source Code and Source Code Documentation Evaluation
* Source Code Interface Analysis
* Test Procedure and Test Case Generation (module, integration, system, and

acceptance)

5.2.5. Testing by the Software Developer

Software testing entails running software products under known conditions with defined inputs
and documented outcomes that can be compared to their predefined expectations. It is a time
consuming, difficult, and imperfect activity. As such, it requires early planning in order to be
effective and efficient.

Test plans and test cases should be created as early in the sofh;vare development process as
feasible. They should identify the schedules, environments, resources (personnel, tuols, etc.),
methodologies, cases (inputs, procedures, outputs, expected results), documentation, and
reporting criteria. The magnitude of effort to be applied throughout the testing process can be
linked to complexity, criticality, reliability, and/or safety issues (e.g., requiring finctions or
modules that produce critical outcomes to be challenged with intensive testing of their fault
tolerance features). Descriptions of categories of software and software testing effort appear in
the literature, for example:

l IEEE Computer Society Press, fkzndbook of &$wure Reliability Elzgineering.

So&are test plans should ident@ the particular tasks to be conducted at each stage of
development and include justification of the level of effort represented by their corresponding
completion criteria.

Software testing has limitations that must be recognized and considered when planning the
testing of a particular software product. Except for the simplest of programs, sohare cannot be
exhaustively tested. Generally it is not feasible to test a software product with all possible
inputs, nor is it possible to test all possible data processing paths that can occur during program
execution. There is no one type of testing or testing methodology that can ensure a particular
software product has been thoroughly tested.
all of the program has been tested.

Testing of all prugram functionality does not mean
Testing of all of a program% code does not mean all

necessary tinctionality is present in the program. Testing of all program Gnctionality and all

Page 21

program code does not mean the program is 100% correct! So&ware testing that finds no errors
should not be interpreted to mean that errors do not exist in the software product; it may mean
the testing was superficial.

An essential element of a software test case is the expected result. It is the key detail that
permits objective evaluation of the actual test result. This necessary testing information is
obtained from the corresponding, predefined definition or specification. A software
specification document must identify what, when, how, why, etc., is to be achieved with an
engineering (i.e., measurable or objectively verifiable) level of detail in order for it to be
confxrmed through testing. The real effort of effective so&are testing lies in the de&&ion of
what is to be tested rather than in the performance of the test.

A software testing process should be based on principles that foster effective examinations of a
software product. Applicable software testing tenets include:

The expected test outcome is predefined;
A good test case has a high probability of exposing an error;
A successful test is one that finds an error;
There is independence from coding;
Both application (user) and sotiare programing) expertise are employed;
Testers use different tools from coders;
Examining only the usual case is insufficient;
Test doc~mentatiun permits its reuse and an independent confirmation of the pass/fail
status of a test outcome during subsequent review.

Once the prerequisite tasks (e,g., code inspection) have been successfully completed, software
testing begins. It starts with unit level testing and concludes with system level testing. There
may be a distinct integration level of testing. A software product should be challenged with test
cases based on its internal structure and with test cases based on its external specification. These
tests should provide a thorough and rigorous examination of the software product’s compliance
with its functional, performance, and interface definitions and requirements.

Code-based testing is also knuwn as structural testing or “white-box” testing. It identifies test
cases based on knowledge obtained from the source code, detailed design specification, and
other development documents. These test cases challenge the control decisions made by the
program; and the program’s data structures including configuration tables.
identify @dead” code that is never executed when the program is run.

Structural testing can
Structural testing is

accomplished primarily with unit (modufe) level testing, but can be extended to other levels of
software testing.

The level of structural testing can be evaluated using metrics that are designed to show what
percentage of the sofmare structure has been evaluated during structural testing. These metrics
are typically referred to as “coverage” and are a measure of completeness with respect to test
selection criteria. The amount of structural coverage should be commensurate with the level of
risk posed by the software. Use of the term “coverage” usually means fUO% coverage. For
example, if a testing program has achieved “statement coverage,” it means that 100% of the

Page 22

